Pandas is a fast, powerful, flexible, and easy-to-use data analysis and manipulation library built on top of NumPy. It provides DataFrames - tabular data structures perfect for handling experimental data.
Why Pandas?
- Intuitive: Work with labeled data using column names and row indices
- Flexible: Handle time series, categorical data, and mixed types
- Powerful: Built-in functions for grouping, pivoting, and merging
- I/O: Read/write many formats (CSV, Excel, SQL, HDF5, JSON)
- Integration: Works seamlessly with NumPy, Matplotlib, and other libraries
Key Features
DataFrames - Labeled Tables
import pandas as pd
# Create a DataFrame
data = pd.DataFrame({
'subject': ['S01', 'S01', 'S02', 'S02'],
'condition': ['A', 'B', 'A', 'B'],
'reaction_time': [0.45, 0.52, 0.48, 0.55]
})
# Access columns
data['reaction_time']
# Filter rows
fast_trials = data[data['reaction_time'] < 0.5]
Data Manipulation
- Filtering: Select rows based on conditions
- Grouping: Aggregate by experimental conditions
- Merging: Combine multiple datasets
- Pivoting: Reshape data for analysis
- Missing Data: Handle NaN values intelligently
Time Series
Built-in support for temporal data:
# Create time index
dates = pd.date_range('2024-01-01', periods=100, freq='D')
data = pd.DataFrame({'value': range(100)}, index=dates)
# Resample to weekly averages
weekly = data.resample('W').mean()
Common Use Cases in Research
- Behavioral Data: Organize trial-by-trial responses
- Spike Counts: Tabulate firing rates across neurons and conditions
- Experimental Metadata: Track subject information, session details
- Statistical Analysis: Prepare data for statistical tests
- Exploratory Analysis: Quickly compute summary statistics
Getting Started
Install Pandas:
conda install pandas
# or
pip install pandas
Basic example:
import pandas as pd
# Load data
data = pd.read_csv('experiment_data.csv')
# Quick overview
print(data.head())
print(data.describe())
# Group by condition and compute means
results = data.groupby('condition')['reaction_time'].mean()
Tips
- Use
.head()and.describe()to quickly inspect data - Learn boolean indexing for powerful filtering
- Use
.groupby()for aggregating across experimental conditions - Set meaningful index names for easier data access
- Save intermediate results with
.to_csv()or.to_hdf() - Use method chaining for readable data pipelines